Soil Fertility

Plant and Soil Science Standard 4 Objective 3

Objectives

- a. Describe the meaning and importance of soil fertility.
- b. Explain the role of organic matter, soil depth, surface slope, soil organisms, and nutrient balance in soil productivity.

Plant nutrients and fertilizers Plants do not eat! Not Food!

- Water
- **Elements**

Water

- Water is the most important plant nutrient
- Makes up 90% of the plants weight
- Water transports the other elements around the plant

Elements

- divided into two groups, macro and micro
- Major elements (macro)
 - ❖Nitrogen N
 - ❖Phosphorus P
 - *Potassium K

minor elements (micro)

- Calcium Ca
- *Magnesium mg
- Sulfur S
- ❖ Iron Fe

minor elements (micro)

- *Manganese Mn
- ❖Boron B
- Copper Cu
- *Zinc Zn

Plant requirements

large amounts of major elements

*relatively small amounts of minor elements

Commercial fertilizers

*shows % or pounds per cwt.

(100#) of the three major
elements in large numbers on
the container or bag.

Commercial fertilizers

- **\$5-10-5**
- \$5% N, 10% P, 5% K
- *remaining 80% is filler
- NP&K are always listed in that order.

Soil tests

determine amount of elements needed for various plants.

How to take a soil sample

- * Take random samples from the area to represent the area you want to test.
- Mix all samples together.
- * Take a sample from the mix of about 16oz of soil.
- Complete soil test info sheet.
- Mail to a reputable lab.
- * Analyze results and make decisions.

Guide to Nutrient Deficiency Symptoms

Nitrogen

- has most noticeable effect on plants
- encourages above ground vegetative growth
- regulates use of other elements

Too much Nitrogen

- lower disease resistance
- weaken stem because of long soft growth
- *lower fruit quality

Too much Nitrogen

- *delay maturity
- increase winter damage to plants

Not enough Nitrogen

- yellow or light green color
- stunted root and top growth

N lost easily from soil

- leaching being filtered down through soil with water
- not held by soil particles, dissolved in water
- O.M. holds insoluble N for slow release

Nitrogen Deficiency in

Phosphorous

- *held tightly by soil particles
- not easily leached

Phosphorous

- effects plants in several ways
- encourage cell division
- flowers and seeds don't form without it
- hastens maturity, offsetting quick growth caused by N.

Phosphorous

- encourage root growth
- *makes K more available
- increase disease resistance
- improves quality of grain, root and fruit crops

Insufficient P

- purple color on underside of leaf
- reduced flower fruit and seed production

Insufficient P

- susceptibility to cold injury
- susceptibility to plant diseases
- *poor quality fruit and seeds

Potassium

modifies both fast soft growth of N and early maturity of P

*is essential

Potassium

- increase disease resistance
- encourages healthy root systems
- *essential for starch formation

Potassium

- *development of chlorophyll
- *efficient use of CO₂

Insufficient K

leaves appear dry and scorched with irregular yellow areas on the surface

Lime

- CaCO3- Calcium Carbonate
- *acts as a plant food
- *affects soil acidity
- soil acidity affects availability of plant food elements

Lime

furnishes Calcium

pH

- measure of acidity or alkalinity
- *pH scale runs from 0 14
- most plants grow best from 5.6-7.0

pH

- *7.0 is neutral
- PH of 7 or above is alkaline or basic
- *pH below 7 is acidic

pH

*as numbers decrease, solution becomes more acidic.

*As numbers increase, solution becomes more basic or alkaline

Choosing a Fertilizer

- Complete/mixed—contain three primary nutrients
- Should be selected based on economics, market availability, other factors, not solid versus liquid
- Placement is critical—GIS/GPS systems can help

Choosing a Fertilizer

(continued)

- Divided into 2 common types
 - Organic
 - Inorganic

Choosing a Fertilizer

(continued)

- Alternatives to commercially made fertilizers include
 - * manure: quality is affected by age/kind of animal, what it ate, amount/kind of litter/bedding used, way manure handled
 - compost: especially good for improving soils low in organic matter

Organic Fertilizers

- Derived from decomposition of animal wastes or plant products
- Also act as soil amendments or conditioners
- Nutrients are released slowly through decomposition
 - Slow and unreliable in cold soil
- Expensive for the amount of nutrients they actually contain

Garden Safe All Purpose Natural Organic Pla	ant Food
GUARANTEED ANALYSIS	5-3-3
Total Nitrogen (N)	5.0%
1.0% Water Soluble Nitrogen	
4.0% Water Insoluble Nitrogen*	3.0%
Available Phosphate (P2O5)	0.00/
Calcium (Ca)	n nw.
Derived from: Poultry manure	
'4.0% slowly available Nitrogen from poultry manure	F644

Inorganic Fertilizers

- Come from mined and manufactured raw materials
- Much more concentrated than Organics
- Can be formulated as fast-release or slow-release
- As far as N goes, most plants use the same form (NO_3^-) , regardless of how it gets there
- Can cause rapid depletion of soil OM

Fertilizer Forms

Liquids

- Salty so they dissolve in water
- Sprayed on root zone or as a foliar application
- Have high tendency to 'burn' plants
- Are usually short-lived

Granules

- Most common form
- Heavy pellets don't drift too far
- Can be slow-release

Fertilizer Forms

- Tablets and Spikes
 - Large compressed items that are pushed into the soil or placed in a hole
 - Expensive for the amount of nutrient they contain
 - Release nutrients very slowly over time
 - Several months to more than a year

Is Soil Alive?

- * 1/4 teaspoon of fertile soil contains approximately:
 - 1 Earthworm
 - 50 Nematodes
 - 52,000 Algae
 - 111,000 Fungi
 - 2,920,000 Actinomycetes
 - 25,280,000 Bacteria

Earthworms

- Decompose organic matter
- * Mix plant litter with soil
- Tunneling help with aeration of the soil

Nemotodes

- *Example are:
 - Roundworms, threadworms, hair worms
 - Consume other microbial organisms whit help regulate the microbial population
 - Also found in the roots of the plants

Algae

- Contain chlorophyll (photo synthetic)
- Soil algae are too small to be seen with the naked eye, but in large numbers can give the surface a green color.
- ❖ They favor damp soil that is exposed to the sun.
- Formation of soil structure

Fungi

- * Examples:
 - * Mushrooms, mold, mildew, rusts, yeasts
- Grow on dead and decaying tissue
- Primary agent of organic matter decay
- Make nutrient available by decomposing organic matter.

Actinomycetes

- * Rod-shaped form of bacteria
 - * Can live under drier conditions than bacteria, very abundant in sod.
 - One of the most important agents in the soil for decomposing and breaking down cellulose.
 - Its what gives freshly tilled soil its smell

Bacteria

- * Most numerous and MOST IMPORTANT!
- Diverse metabolism aides in breaking down organic chemicals like pestisides.
- Can also degrade inorganic materials, natural and synthetic
- * The Fix Nitrogen

Why do we need microorganisms in Agriculture?

- * Decay plant residue (straw)
- Fix nitrogen
- Break down nutrients needed by plants
- Break down cellulose
- * Finally, much of the soil is not available to the plants until the microbes break it down